Predictors of ¹⁸F-fluorodeoxyglucose positron-emission tomography-driven disease detection in patients with HER2[+] early breast cancer. A substudy of the PHERGAIN trial

Antonio Llombart-Cussac¹, Aleix Prat², José Manuel Pérez-García³, José Mateos⁴, Tomás Pascual², Santiago Escrivà-De-Romani⁵, Agostina Stradella⁶, Manuel Ruiz-Borrego⁷, Begoña Bermejo De Las Heras⁸, Marleen Keyaerts⁹, Miguel Sampayo-Cordero¹⁰, Andrea Malfettone¹⁰, Roldan Cortés¹¹, Patricia Galván¹², Javier Cortés¹³, Geraldine Gebhart¹⁴

¹ Medical Oncology, Hospital Universitario Arnau de Vilanova, Universidad Católica, Valencia; Medica Scientia Innovation Research (MedSIR), Ridgewood, New Jersey and, Barcelona, Spain ³ Medical Oncology, Universitario Arnau de Vilanova, Barcelona, Spain ³ Medical Oncology, Hospital Universitario Arnau de Vilanova, Barcelona, Spain ³ Medical Oncology, Hospital Universitario Virgen del Rocio, Sevilla, Spain ³ Medical Oncology, Hospital Universitario Virgen del Rocio Arnau de Vilanova, Spain ³ Medical Oncology, Hospital Universitario Virgen del Rocio Arnau de Vilanova, Barcelona, Spain ³ Medical Oncology, Hospital Universitario Virgen del Rocio Arnau de Vilanova, Barcelona, Spain ³ Medical Oncology, Hospital Universitario Virgen del Rocio Arnau del Rocio Arnau del Vilanova, Barcelona, Spain ³ Medical Oncology, Hospital Universitario Virgen del Rocio Arnau del Vilanova, Barcelona, Spain ³ Medical Oncology, Hospital Universitario Virgen del Rocio Arnau del Vilanova del Vilano

BACKGROUND

- Early metabolic evaluation using ¹⁸F-FDG PET/CT (PET) might help to recognize patients (pts) with an increased probability of pathological complete response (pCR).¹
- However, PET is not recommended for staging all pts with early breast cancer (EBC). Its diagnostic accuracy is reduced in conditions with a low rate of actively replicating cells.²
- There is a need to investigate the association between clinical, molecular, and metabolic tumor characteristics with the probability of disease detection by PET in a large cohort of pts.^{2,3}
- PHERGAIN trial is assessing the early metabolic response by PET to neoadjuvant chemotherapy-free treatment with trastuzumab and pertuzumab, and the opportunity of chemotherapy de-escalation with a response-adapted strategy in pts with HER2[+] EBC (Figure 1).
- In the present substudy, clinical, molecular, and metabolic predictors of disease detection using PET were evaluated.⁴

Figure 1. Inclusion phase of PHERGain trial

moxifen pre-menopausal); PET: 18F-fluorodeoxyglucose positron emission tomography/

computed tomography; H: Trastuzumab SC; HER2: Human Epidermal Growth Factor

Receptor 2; HR: Hormonal receptor; MRI: Magnetic resonance imaging; P: Pertuzumab

IV; R: Randomization; TCHP: Trastuzumab, pertuzumab, docetaxel, and carboplatin.

OBJECTIVES

- Correlation of PET status with the maximum standardized uptake value (SUV_{max}) and clinicopathological features in all HER2[+] EBC pts screened in the PHERGAIN trial.
- Assessment of HER2-enriched pts, stromal tumor-infiltrating lymphocytes (TILs), risk of recurrence (ROR) scores, and gene expression in PET[-] and PET[+] matched pts.

METHODS

- PHERGAIN eligibility criteria required at least one breast lesion with a $SUV_{max} \ge 1.5 \times SUV_{mean}$ liver + 2 SD by PET. Out of 512 screened pts, 75 (14.7%) resulted PET[-].
- HER2-enriched subtype, TILs, ROR, and gene expression data were evaluated by prediction analysis of microarray 50 (PAM50) classifier and Vantage 3D Cancer Metabolism Panel.⁴
- Matched procedure selected a cohort of 21 PET[-] and 21 PET[+] pts (Figure 2).
- Statistical Methods
- Adjusted analysis based on the logistic regression model.
- → Matched cohorts were analyzed with paired tests (Mc Nemar and Wilcoxon tests).
- → Multiple testing issues with gene expression were controlled with false discovery rate (q-value<5%).</p>

Figure 2. Matching selection

PET, ¹⁸F-fluorodeoxyglucose positron emission tomography/computed tomography.

*The matching uses a nearest neighbor procedure based on a logistic regression.

Matched factors were selected in accordance their clinical relevance and significant association with PET status.

RESULTS - All pts screened (N=512)

Table 1. Baseline characteristics of the pts

Characteristics, N (%)	All patients (N=512)	PET[-] (N=75)	PET[+] (N=437)	p-value*
Age in years, median (range)	52 (20-83)	52 (36-83)	51 (20-82)	0.155
Tumor size by MRI, median (range)	32 (9-157)	30 (14-100)	32 (9-157)	0.181
Tumor size (T) T1	77 (15)	19 (25.3)	58 (13.3)	0.01
T2	353 (69)	46 (61.3)	307 (70.3)	
T3	82(16)	10 (13.3)	72 (16.5)	
SUV _{max} at baseline, median (range)	7.1 (1-39.3)	2.7 (1-7.3)	8 (2.1-39.3)	<0.01
Nodal status (N) N0	298 (58.2)	62 (86.7)	236 (54)	<0.01
N1- 3	214 (41.8)	13 (13.3)	201 (46)	
Hormonal status [-]	162 (31.6)	21 (28)	141 (32.3)	0.464
[+]	350 (68.4)	54 (72)	296 (67.7)	
HER2 IHC status 2+	126 (24.6)	24 (32)	102 (23.3)	0.11
3+	386 (75.4)	51 (68)	335 (76.7)	
Ductal carcinoma No	91 (17.8)	21 (28)	70 (16)	0.013
Yes	421 (82.2)	54 (72)	367 (84)	
Tumor Grade (G) G1 to G2	216 (42.2)	43 (57.3)	173 (39.6)	<0.01
G3	202 (39.5)	13 (17.3)	38 (43.3)	
Gx	94 (18.4)	19 (25.3)	75 (17.2)	
Ki67(%) ≤20	82 (16)	16 (21.3)	66 (15.1)	0.177
>20	430 (84)	59 (78.7)	371 (84.9)	
*In adjusted analysis DETF I tumors had lower tumor size histological grade and lymph node involvement than DETF I tumors				

*In adjusted analyses, PET[-] tumors had lower tumor size, histological grade, and lymph node involvement than PET[+] tumors.

G: Grade; HER2: Human Epidermal Growth Factor Receptor 2; IHC: Immunohistochemistry; MRI: Magnetic resonance imaging; N: Nodal status; PET: ¹⁸F-fluorodeoxyglucose positron emission tomography/computed tomography; SUVmax,: The maximum standardized uptake value; T: Tumor size.

Figure 3. Association between SUV_{max} levels and baseline characteristics

RESULTS - Cohort of 21 PET[-] and 21 PET[+] matched pts

Figure 4. PAM50 gene signatures by PET status

HER2: Human Epidermal Growth Factor Receptor 2; IHC: Immunohistochemistry; PAM50: Prediction analysis of microarray 50; PET: 18F-fluorodeoxyglucose positron emission tomography/computed tomography; ROR-S: Risk of recurrence based on subtype; ROR-P: Risk of recurrence based on subtype and proliferation; TILs: Tumor-infiltrating lymphocytes.

Figure 5. Analysis of cancer metabolism genes according to PET status

PET: ¹⁸F-fluorodeoxyglucose positron emission tomography/computed tomography; mRNA: Messenger ribonucleic acid. *Genes reported achieved the q-value <5% criteria for False Discovery Rate adjustment. Comparison of gene expression between PET[-] and PET[+] cohorts and relative p-values are shown.

RESULTS

- SUV_{max} was associated with tumor size, lymph node involvement, hormone receptor status, HER2 protein expression levels, Ki67 index, and histological grade (Figure 3).
- PET[-] tumors had lower tumor size, histological grade, and lymph node involvement than PET[+] tumors (Table 1).
- A decreased risk of recurrence and lower proportion of HER2-enriched subtype by PAM50 characterized PET[-] tumors with respect to PET[+] tumors (Figure 4).
- Among PET[-] pts, genes involved in glucose metabolism (*DLAT, IDH2, LDHA, PGK1, PGLS, and TPI1*), hypoxia signaling (HIF1A), and carbon metabolism (*SLC7A5, SLC16A3*) were under expressed, whereas genes involved in the mTOR pathway (*AKT2*) and growth factor receptor (*FLT3*) were overexpressed compared to PET[+] pts (**Figure 5**).

CONCLUSIONS

Considering the heterogeneity of HER2[+] disease, these results may need to be considered for an appropriate selection of PET[+] pts in HER2[+] EBC.

BIBLIOGRAPHY

- 1. Gebhart G et al. J Nucl Med 2013;54(11),1862-8.
- 2. Caresia Aroztegui AP et al. Review Tumour Biol 2017;39(10).
- 3. Antonovic L et al. Eur J Nucl Med Mol Imaging 2019;46(7),1468-
- 4. Prat A et al. Clin Cancer Res 2017;23(12), 3035-3044.

ACKNOWLEDGEMENTS:

We thank all participating patients and all study teams involved in **PHERGAIN trial**. MedSIR (Study Sponsor), and Hoffmann-La Roche (Funder).

Conflicts of interest: https://www.medsir.org/response

